
B I T C O I N
A Peer-to-Peer Electronic Cash System

Abstract. A purely peer-to-peer version of electronic cash would allow online payments to be sent directly from one 
party to another without going through a financial institution. Digital signatures provide part of the solution, but the 
main benefits are lost if a trusted third party is still required to prevent double-spending.
We propose a solution to the double-spending problem using a peer-to-peer network. The network timestamps transactions by hashing them into 
an ongoing chain of hash-based proof-of-work, forming a record that cannot be changed without redoing the proof-of-work. The longest chain not 
only serves as proof of the sequence of events witnessed, but proof that it came from the largest pool of CPU power. As long as a majority of CPU
power is controlled by nodes that are not cooperating to attack the network, they'll generate the longest chain and outpace attackers. The network 
itself requires minimal structure. Messages are broadcast on a best effort basis, and nodes can leave and rejoin the network at will, accepting the 
longest proof-of-work chain as proof of what happened while they were gone.

1. Introduction
Commerce on the Internet has come to rely almost exclusively
on  financial  institutions  serving  as  trusted  third  parties  to
process  electronic  payments.  While  the  system works  well
enough for most transactions, it still suffers from the inherent
weaknesses  of  the  trust  based  model.  Completely  non-
reversible transactions are not really possible, since financial
institutions  cannot  avoid  mediating  disputes.  The  cost  of
mediation increases transaction costs,  limiting the minimum
practical  transaction  size  and  cutting  off  the  possibility  for
small casual transactions, and there is a broader cost in the
loss  of  ability  to  make  non-reversible  payments  for  non-
reversible services. With the possibility of reversal, the need
for trust spreads. Merchants must be wary of their customers,
hassling them for more information than they would otherwise
need.  A  certain  percentage  of  fraud  is  accepted  as
unavoidable. These costs and payment uncertainties can be
avoided  in  person  by  using  physical  currency,  but  no
mechanism exists to make payments over a communications
channel  without  a  trusted  party.  What  is  needed  is  an
electronic  payment  system  based  on  cryptographic  proof
instead of  trust,  allowing any two willing  parties to transact
directly with each other without the need for  a trusted third
party.  Transactions  that  are  computationally  impractical  to
reverse would protect sellers from fraud, and routine escrow
mechanisms could easily be implemented to protect buyers. In
this  paper,  we  propose  a  solution  to  the  double-spending
problem using a peer-to-peer distributed timestamp server to
generate  computational  proof  of  the  chronological  order  of
transactions. The system is secure as long as honest nodes
collectively  control  more  CPU  power  than  any  cooperating
group of attacker nodes.

2. Transactions
We define an electronic coin as a chain of digital signatures.
Each owner transfers the coin to the next by digitally signing a
hash of the previous transaction and the public key of the next
owner and adding these to the end of the coin. A payee can
verify the signatures to verify the chain of ownership.

The problem of course is the payee can't verify that one of the
owners did not double-spend the coin. A common solution is to
introduce a trusted central authority, or mint, that checks every
transaction for  double  spending.  After  each transaction,  the
coin must be returned to the mint to issue a new coin, and
only coins issued directly from the mint are trusted not to be
double-spent. The problem with this solution is that the fate of
the entire money system depends on the company running the
mint, with every transaction having to go through them, just
like a bank. We need a way for the payee to know that the
previous owners did not sign any earlier transactions. For our
purposes, the earliest transaction is the one that counts, so we
don't care about later attempts to double-spend. The only way
to confirm the absence of a transaction is to be aware of all
transactions. In the mint based model, the mint was aware of
all transactions and decided which arrived first. To accomplish
this  without  a  trusted  party,  transactions  must  be  publicly
announced [1], and we need a system for participants to agree
on a single history of the order in which they were received.
The payee needs proof that at the time of each transaction,
the majority of nodes agreed it was the first received.

3. Timestamp Server
The solution we propose begins with a timestamp server. A
timestamp server works by taking a hash of a block of items to
be timestamped and widely publishing the hash, such as in a
newspaper or Usenet post [2-5]. The timestamp proves that
the data must have existed at the time, obviously, in order to
get  into  the  hash.  Each  timestamp  includes  the  previous
timestamp in its hash, forming a chain, with each additional
timestamp reinforcing the ones before it.

4. Proof-of-Work
To implement a distributed timestamp server on a peer-to-peer
basis, we will need to use a proof- of-work system similar to
Adam Back's Hashcash [6], rather than newspaper or Usenet
posts.  The proof-of-work involves scanning for  a value that
when hashed, such as with SHA-256, the hash begins with a
number of zero bits. The average work required is exponential
in  the number of  zero bits  required and can be verified by
executing  a  single  hash.  For  our  timestamp  network,  we
implement the proof-of-work by incrementing a nonce in the
block until  a value is found that  gives the block's hash the
required zero bits. Once the CPU effort has been expended to
make it satisfy the proof-of-work, the block cannot be changed
without redoing the work. As later blocks are chained after it,
the work to change the block would include redoing all  the
blocks after it.

The  proof-of-work  also  solves  the  problem  of  determining
representation in majority decision making. If the majority were
based on one-IP-address-one-vote, it could be subverted by
anyone able to allocate many IPs. Proof-of-work is essentially
one-CPU-one-vote.  The majority  decision is  represented by
the longest chain, which has the greatest proof-of-work effort
invested  in  it.  If  a  majority  of  CPU power  is  controlled  by
honest  nodes,  the  honest  chain  will  grow  the  fastest  and
outpace any competing chains.  To modify  a  past  block,  an
attacker would have to redo the proof-of-work of the block and
all blocks after it and then catch up with and surpass the work
of the honest nodes. We will show later that the probability of
a  slower  attacker  catching  up  diminishes  exponentially  as
subsequent blocks are added. To compensate for increasing
hardware speed and varying interest  in running nodes over
time,  the proof-of-work  difficulty  is  determined by a  moving
average targeting an average number of blocks per hour. If
they're generated too fast, the difficulty increases.

5. Network
The steps to run the network are as follows:
1) New transactions are broadcast to all nodes.
2) Each node collects new transactions into a block.
3) Each node works on finding a difficult proof-of-work for its 
block.
4) When a node finds a proof-of-work, it broadcasts the block 
to all nodes.
5) Nodes accept the block only if all transactions in it are valid 
and not already spent.
6) Nodes express their acceptance of the block by working on 
creating the next block in the chain, using the hash of the 
accepted block as the previous hash.
Nodes always consider the longest chain to be the correct one
and will keep working on extending it. If two nodes broadcast
different  versions  of  the  next  block  simultaneously,  some
nodes may receive one or the other first. In that case, they
work on the first one they received, but save the other branch
in case it  becomes longer. The tie will  be broken when the
next proof- of-work is found and one branch becomes longer;
the  nodes that  were  working  on  the other  branch  will  then
switch to the longer one. 3New transaction broadcasts do not
necessarily need to reach all  nodes. As long as they reach
many  nodes,  they  will  get  into  a  block  before  long.  Block
broadcasts are also tolerant of dropped messages. If a node
does not receive a block, it will request it when it receives the
next block and realizes it missed one.

6. Incentive
By  convention,  the  first  transaction  in  a  block  is  a  special
transaction that starts a new coin owned by the creator of the
block.  This  adds  an  incentive  for  nodes  to  support  the
network,  and provides a way to initially distribute coins into
circulation, since there is no central authority to issue them.
The steady addition of a constant of amount of new coins is
analogous to gold miners expending resources to add gold to
circulation. In our case, it is CPU time and electricity that is
expended. The incentive can also be funded with transaction
fees. If the output value of a transaction is less than its input
value, the difference is a transaction fee that is added to the
incentive value of the block containing the transaction. Once a
predetermined number of coins have entered circulation, the
incentive  can  transition  entirely  to  transaction  fees  and  be
completely inflation free.  The incentive may help encourage
nodes to stay honest. If a greedy attacker is able to assemble
more CPU power than all the honest nodes, he would have to
choose between using it to defraud people by stealing back
his payments, or using it to generate new coins. He ought to
find  it  more  profitable  to  play  by the rules,  such rules  that
favour him with more new coins than everyone else combined,
than  to  undermine  the  system and  the  validity  of  his  own
wealth.

7. Reclaiming Disk Space
Once the latest transaction in a coin is buried under enough
blocks, the spent transactions before it  can be discarded to
save disk space. To facilitate this without breaking the block's
hash, transactions are hashed in a Merkle Tree [7][2][5], with
only the root included in the block's hash. Old blocks can then
be  compacted  by  stubbing  off  branches  of  the  tree.  The
interior hashes do not need to be stored.

A block header with no transactions would be about 80 bytes.
If  we  suppose  blocks  are  generated  every  10  minutes,  80
bytes * 6 * 24 * 365 = 4.2MB per year. With computer systems
typically  selling with 2GB of  RAM as of  2008,  and Moore's
Law  predicting  current  growth  of  1.2GB  per  year,  storage
should not be a problem even if the block headers must be
kept in memory.

8. Simplified Payment Verification
It is possible to verify payments without running a full network
node. A user only needs to keep a copy of the block headers
of  the  longest  proof-of-work  chain,  which  he  can  get  by
querying  network  nodes  until  he's  convinced  he  has  the
longest  chain,  and  obtain  the  Merkle  branch  linking  the
transaction to the block it's timestamped in. He can't check the
transaction for himself, but by linking it to a place in the chain,

he can see that a network node has accepted it, and blocks
added after it further confirm the network has accepted it.

As such, the verification is reliable as long as honest nodes
control the network, but is more vulnerable if the network is
overpowered by an attacker. While network nodes can verify
transactions  for  themselves,  the  simplified  method  can  be
fooled by an attacker's fabricated transactions for as long as
the  attacker  can  continue  to  overpower  the  network.  One
strategy to protect against this would be to accept alerts from
network nodes when they detect an invalid block, prompting
the  user's  software  to  download  the  full  block  and  alerted
transactions  to  confirm  the  inconsistency.  Businesses  that
receive frequent payments will probably still want to run their
own  nodes  for  more  independent  security  and  quicker
verification.

9. Combining and Splitting Value
Although it would be possible to handle coins individually, it
would be unwieldy to make a separate transaction for every
cent in a transfer.  To allow value to be split  and combined,
transactions  contain  multiple  inputs  and  outputs.  Normally
there  will  be  either  a  single  input  from  a  larger  previous
transaction or multiple inputs combining smaller amounts, and
at most two outputs: one for the payment, and one returning
the change, if any, back to the sender.

It should be noted that fan-out, where a transaction depends
on  several  transactions,  and  those  transactions  depend  on
many more, is not a problem here. There is never the need to
extract a complete standalone copy of a transaction's history.

10. Privacy
The traditional banking model achieves a level of privacy by
limiting access to information to the parties involved and the
trusted third party. The necessity to announce all transactions
publicly  precludes  this  method,  but  privacy  can  still  be
maintained  by  breaking  the  flow  of  information  in  another
place: by keeping public keys anonymous. The public can see
that  someone is  sending  an  amount  to  someone else,  but
without information linking the transaction to anyone. This is
similar  to  the  level  of  information  released  by  stock
exchanges, where the time and size of individual trades, the
"tape", is made public, but without telling who the parties were.

As an additional firewall, a new key pair should be used for
each transaction to keep them from being linked to a common
owner.  Some  linking  is  still  unavoidable  with  multi-input
transactions, which necessarily reveal that  their  inputs were
owned by the same owner. The risk is that if the owner of a
key is  revealed,  linking could reveal  other  transactions that
belonged to the same owner.

11. Calculations
We consider the scenario of an attacker trying to generate an
alternate chain faster  than the honest  chain.  Even if  this  is
accomplished, it does not throw the system open to arbitrary
changes,  such  as  creating  value  out  of  thin  air  or  taking
money that  never  belonged to  the  attacker.  Nodes are  not
going to accept an invalid transaction as payment, and honest
nodes will never accept a block containing them. An attacker
can only try to change one of  his own transactions to take
back money he recently spent. The race between the honest
chain  and  an  attacker  chain  can  be  characterized  as  a
Binomial  Random  Walk.  The  success  event  is  the  honest
chain being extended by one block, increasing its lead by +1,
and the failure event is the attacker's chain being extended by
one  block,  reducing  the  gap  by  -1.  The  probability  of  an
attacker  catching up from a given deficit  is  analogous to  a
Gambler's Ruin problem. Suppose a gambler with unlimited
credit starts at a deficit and plays potentially an infinite number
of  trials  to  try  to  reach  breakeven.  We  can  calculate  the
probability  he  ever  reaches  breakeven,  or  that  an  attacker
ever catches up with the honest chain, as follows [8]:
p =  probability  an  honest  node  finds  the  next  block
q  = probability  the  attacker  finds  the  next  block
qz = probability the attacker will ever catch up from z blocks
behind

Given  our  assumption  that  p  >  q,  the  probability  drops
exponentially  as  the  number  of  blocks  the  attacker  has  to
catch  up  with  increases.  With  the  odds  against  him,  if  he
doesn't  make  a  lucky  lunge  forward  early  on,  his  chances
become vanishingly small as he falls further behind. We now
consider how long the recipient of a new transaction needs to
wait before being sufficiently certain the sender can't change
the transaction.  We assume the sender  is  an attacker  who

wants to make the recipient believe he paid him for a while,
then  switch  it  to  pay  back  to  himself  after  some time  has
passed. The receiver will be alerted when that happens, but
the sender hopes it will be too late. The receiver generates a
new key pair and gives the public key to the sender shortly
before  signing.  This  prevents  the  sender  from preparing  a
chain of blocks ahead of time by working on it continuously
until  he  is  lucky  enough  to  get  far  enough  ahead,  then
executing  the  transaction  at  that  moment.  Once  the
transaction  is  sent,  the  dishonest  sender  starts  working  in
secret on a parallel chain containing an alternate version of his
transaction. The recipient waits until the transaction has been
added to a block and z blocks have been linked after it. He
doesn't know the exact amount of progress the attacker has
made,  but  assuming  the  honest  blocks  took  the  average
expected time per block, the attacker's potential progress will
be a Poisson distribution with expected value:

To get the probability the attacker could still catch up now, we
multiply the Poisson density for each amount of progress he
could have made by the probability he could catch up from
that point:

Rearranging  to  avoid  summing  the  infinite  tail  of  the
distribution…

Converting to C code…
#include <math.h>
double  AttackerSuccessProbability(double  q,  int
z)
{
   double p = 1.0 - q;
   double lambda = z * (q / p);
   double sum = 1.0;
   int i, k;
   for (k = 0; k <= z; k++)
   {
      double poisson = exp(-lambda);
      for (i = 1; i <= k; i++)
         poisson *= lambda / i;
      sum -= poisson * (1 - pow(q / p, z - k));
   }
   return sum;
}

Running  some results,  we  can  see  the  probability  drop  off
exponentially with z.
q=0.1  z=0  P=1.0000000  z=1  P=0.2045873  z=2
P=0.0509779 z=3 P=0.0131722 z=4 P=0.0034552 z=5
P=0.0009137 z=6 P=0.0002428 z=7 P=0.0000647 z=8
P=0.0000173 z=9 P=0.0000046 z=10 P=0.0000012
q=0.3  z=0  P=1.0000000  z=5  P=0.1773523  z=10
P=0.0416605  z=15  P=0.0101008  z=20  P=0.0024804
z=25  P=0.0006132  z=30  P=0.0001522  z=35
P=0.0000379  z=40  P=0.0000095  z=45  P=0.0000024
z=50 P=0.0000006

Solving for P less than 0.1%…
P  <  0.001  q=0.10  z=5  q=0.15  z=8  q=0.20  z=11
q=0.25 z=15 q=0.30 z=24 q=0.35 z=41 q=0.40 z=89
q=0.45 z=340

12. Conclusion
We  have  proposed  a  system  for  electronic  transactions
without relying on trust. We started with the usual framework
of coins made from digital signatures, which provides strong
control  of  ownership,  but  is  incomplete  without  a  way  to
prevent double-spending. To solve this, we proposed a peer-
to-peer network using proof-of-work to record a public history
of  transactions  that  quickly  becomes  computationally
impractical for an attacker to change if honest nodes control a
majority  of  CPU  power.  The  network  is  robust  in  its
unstructured  simplicity.  Nodes  work  all  at  once  with  little
coordination.  They  do  not  need  to  be  identified,  since
messages are not routed to any particular place and only need
to be delivered on a best effort basis. Nodes can leave and
rejoin the network at will, accepting the proof-of-work chain as
proof of what happened while they were gone. They vote with
their CPU power, expressing their acceptance of valid blocks
by working on extending them and rejecting invalid blocks by
refusing to work on them. Any needed rules and incentives
can be enforced with this consensus mechanism.
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