
B I T C O I N
A Peer-to-Peer Electronic Cash System

Abstract. A purely peer-to-peer version of electronic cash would allow online payments to be sent directly from one
party to another without going through a financial institution. Digital signatures provide part of the solution, but the
main benefits are lost if a trusted third party is still required to prevent double-spending.
We propose a solution to the double-spending problem using a peer-to-peer network. The network timestamps transactions by hashing them into
an ongoing chain of hash-based proof-of-work, forming a record that cannot be changed without redoing the proof-of-work. The longest chain not
only serves as proof of the sequence of events witnessed, but proof that it came from the largest pool of CPU power. As long as a majority of CPU
power is controlled by nodes that are not cooperating to attack the network, they'll generate the longest chain and outpace attackers. The network
itself requires minimal structure. Messages are broadcast on a best effort basis, and nodes can leave and rejoin the network at will, accepting the
longest proof-of-work chain as proof of what happened while they were gone.

1. Introduction
Commerce on the Internet has come to rely almost exclusively
on financial institutions serving as trusted third parties to
process electronic payments. While the system works well
enough for most transactions, it still suffers from the inherent
weaknesses of the trust based model. Completely non-
reversible transactions are not really possible, since financial
institutions cannot avoid mediating disputes. The cost of
mediation increases transaction costs, limiting the minimum
practical transaction size and cutting off the possibility for
small casual transactions, and there is a broader cost in the
loss of ability to make non-reversible payments for non-
reversible services. With the possibility of reversal, the need
for trust spreads. Merchants must be wary of their customers,
hassling them for more information than they would otherwise
need. A certain percentage of fraud is accepted as
unavoidable. These costs and payment uncertainties can be
avoided in person by using physical currency, but no
mechanism exists to make payments over a communications
channel without a trusted party. What is needed is an
electronic payment system based on cryptographic proof
instead of trust, allowing any two willing parties to transact
directly with each other without the need for a trusted third
party. Transactions that are computationally impractical to
reverse would protect sellers from fraud, and routine escrow
mechanisms could easily be implemented to protect buyers. In
this paper, we propose a solution to the double-spending
problem using a peer-to-peer distributed timestamp server to
generate computational proof of the chronological order of
transactions. The system is secure as long as honest nodes
collectively control more CPU power than any cooperating
group of attacker nodes.

2. Transactions
We define an electronic coin as a chain of digital signatures.
Each owner transfers the coin to the next by digitally signing a
hash of the previous transaction and the public key of the next
owner and adding these to the end of the coin. A payee can
verify the signatures to verify the chain of ownership.

The problem of course is the payee can't verify that one of the
owners did not double-spend the coin. A common solution is to
introduce a trusted central authority, or mint, that checks every
transaction for double spending. After each transaction, the
coin must be returned to the mint to issue a new coin, and
only coins issued directly from the mint are trusted not to be
double-spent. The problem with this solution is that the fate of
the entire money system depends on the company running the
mint, with every transaction having to go through them, just
like a bank. We need a way for the payee to know that the
previous owners did not sign any earlier transactions. For our
purposes, the earliest transaction is the one that counts, so we
don't care about later attempts to double-spend. The only way
to confirm the absence of a transaction is to be aware of all
transactions. In the mint based model, the mint was aware of
all transactions and decided which arrived first. To accomplish
this without a trusted party, transactions must be publicly
announced [1], and we need a system for participants to agree
on a single history of the order in which they were received.
The payee needs proof that at the time of each transaction,
the majority of nodes agreed it was the first received.

3. Timestamp Server
The solution we propose begins with a timestamp server. A
timestamp server works by taking a hash of a block of items to
be timestamped and widely publishing the hash, such as in a
newspaper or Usenet post [2-5]. The timestamp proves that
the data must have existed at the time, obviously, in order to
get into the hash. Each timestamp includes the previous
timestamp in its hash, forming a chain, with each additional
timestamp reinforcing the ones before it.

4. Proof-of-Work
To implement a distributed timestamp server on a peer-to-peer
basis, we will need to use a proof- of-work system similar to
Adam Back's Hashcash [6], rather than newspaper or Usenet
posts. The proof-of-work involves scanning for a value that
when hashed, such as with SHA-256, the hash begins with a
number of zero bits. The average work required is exponential
in the number of zero bits required and can be verified by
executing a single hash. For our timestamp network, we
implement the proof-of-work by incrementing a nonce in the
block until a value is found that gives the block's hash the
required zero bits. Once the CPU effort has been expended to
make it satisfy the proof-of-work, the block cannot be changed
without redoing the work. As later blocks are chained after it,
the work to change the block would include redoing all the
blocks after it.

The proof-of-work also solves the problem of determining
representation in majority decision making. If the majority were
based on one-IP-address-one-vote, it could be subverted by
anyone able to allocate many IPs. Proof-of-work is essentially
one-CPU-one-vote. The majority decision is represented by
the longest chain, which has the greatest proof-of-work effort
invested in it. If a majority of CPU power is controlled by
honest nodes, the honest chain will grow the fastest and
outpace any competing chains. To modify a past block, an
attacker would have to redo the proof-of-work of the block and
all blocks after it and then catch up with and surpass the work
of the honest nodes. We will show later that the probability of
a slower attacker catching up diminishes exponentially as
subsequent blocks are added. To compensate for increasing
hardware speed and varying interest in running nodes over
time, the proof-of-work difficulty is determined by a moving
average targeting an average number of blocks per hour. If
they're generated too fast, the difficulty increases.

5. Network
The steps to run the network are as follows:
1) New transactions are broadcast to all nodes.
2) Each node collects new transactions into a block.
3) Each node works on finding a difficult proof-of-work for its
block.
4) When a node finds a proof-of-work, it broadcasts the block
to all nodes.
5) Nodes accept the block only if all transactions in it are valid
and not already spent.
6) Nodes express their acceptance of the block by working on
creating the next block in the chain, using the hash of the
accepted block as the previous hash.
Nodes always consider the longest chain to be the correct one
and will keep working on extending it. If two nodes broadcast
different versions of the next block simultaneously, some
nodes may receive one or the other first. In that case, they
work on the first one they received, but save the other branch
in case it becomes longer. The tie will be broken when the
next proof- of-work is found and one branch becomes longer;
the nodes that were working on the other branch will then
switch to the longer one. 3New transaction broadcasts do not
necessarily need to reach all nodes. As long as they reach
many nodes, they will get into a block before long. Block
broadcasts are also tolerant of dropped messages. If a node
does not receive a block, it will request it when it receives the
next block and realizes it missed one.

6. Incentive
By convention, the first transaction in a block is a special
transaction that starts a new coin owned by the creator of the
block. This adds an incentive for nodes to support the
network, and provides a way to initially distribute coins into
circulation, since there is no central authority to issue them.
The steady addition of a constant of amount of new coins is
analogous to gold miners expending resources to add gold to
circulation. In our case, it is CPU time and electricity that is
expended. The incentive can also be funded with transaction
fees. If the output value of a transaction is less than its input
value, the difference is a transaction fee that is added to the
incentive value of the block containing the transaction. Once a
predetermined number of coins have entered circulation, the
incentive can transition entirely to transaction fees and be
completely inflation free. The incentive may help encourage
nodes to stay honest. If a greedy attacker is able to assemble
more CPU power than all the honest nodes, he would have to
choose between using it to defraud people by stealing back
his payments, or using it to generate new coins. He ought to
find it more profitable to play by the rules, such rules that
favour him with more new coins than everyone else combined,
than to undermine the system and the validity of his own
wealth.

7. Reclaiming Disk Space
Once the latest transaction in a coin is buried under enough
blocks, the spent transactions before it can be discarded to
save disk space. To facilitate this without breaking the block's
hash, transactions are hashed in a Merkle Tree [7][2][5], with
only the root included in the block's hash. Old blocks can then
be compacted by stubbing off branches of the tree. The
interior hashes do not need to be stored.

A block header with no transactions would be about 80 bytes.
If we suppose blocks are generated every 10 minutes, 80
bytes * 6 * 24 * 365 = 4.2MB per year. With computer systems
typically selling with 2GB of RAM as of 2008, and Moore's
Law predicting current growth of 1.2GB per year, storage
should not be a problem even if the block headers must be
kept in memory.

8. Simplified Payment Verification
It is possible to verify payments without running a full network
node. A user only needs to keep a copy of the block headers
of the longest proof-of-work chain, which he can get by
querying network nodes until he's convinced he has the
longest chain, and obtain the Merkle branch linking the
transaction to the block it's timestamped in. He can't check the
transaction for himself, but by linking it to a place in the chain,

he can see that a network node has accepted it, and blocks
added after it further confirm the network has accepted it.

As such, the verification is reliable as long as honest nodes
control the network, but is more vulnerable if the network is
overpowered by an attacker. While network nodes can verify
transactions for themselves, the simplified method can be
fooled by an attacker's fabricated transactions for as long as
the attacker can continue to overpower the network. One
strategy to protect against this would be to accept alerts from
network nodes when they detect an invalid block, prompting
the user's software to download the full block and alerted
transactions to confirm the inconsistency. Businesses that
receive frequent payments will probably still want to run their
own nodes for more independent security and quicker
verification.

9. Combining and Splitting Value
Although it would be possible to handle coins individually, it
would be unwieldy to make a separate transaction for every
cent in a transfer. To allow value to be split and combined,
transactions contain multiple inputs and outputs. Normally
there will be either a single input from a larger previous
transaction or multiple inputs combining smaller amounts, and
at most two outputs: one for the payment, and one returning
the change, if any, back to the sender.

It should be noted that fan-out, where a transaction depends
on several transactions, and those transactions depend on
many more, is not a problem here. There is never the need to
extract a complete standalone copy of a transaction's history.

10. Privacy
The traditional banking model achieves a level of privacy by
limiting access to information to the parties involved and the
trusted third party. The necessity to announce all transactions
publicly precludes this method, but privacy can still be
maintained by breaking the flow of information in another
place: by keeping public keys anonymous. The public can see
that someone is sending an amount to someone else, but
without information linking the transaction to anyone. This is
similar to the level of information released by stock
exchanges, where the time and size of individual trades, the
"tape", is made public, but without telling who the parties were.

As an additional firewall, a new key pair should be used for
each transaction to keep them from being linked to a common
owner. Some linking is still unavoidable with multi-input
transactions, which necessarily reveal that their inputs were
owned by the same owner. The risk is that if the owner of a
key is revealed, linking could reveal other transactions that
belonged to the same owner.

11. Calculations
We consider the scenario of an attacker trying to generate an
alternate chain faster than the honest chain. Even if this is
accomplished, it does not throw the system open to arbitrary
changes, such as creating value out of thin air or taking
money that never belonged to the attacker. Nodes are not
going to accept an invalid transaction as payment, and honest
nodes will never accept a block containing them. An attacker
can only try to change one of his own transactions to take
back money he recently spent. The race between the honest
chain and an attacker chain can be characterized as a
Binomial Random Walk. The success event is the honest
chain being extended by one block, increasing its lead by +1,
and the failure event is the attacker's chain being extended by
one block, reducing the gap by -1. The probability of an
attacker catching up from a given deficit is analogous to a
Gambler's Ruin problem. Suppose a gambler with unlimited
credit starts at a deficit and plays potentially an infinite number
of trials to try to reach breakeven. We can calculate the
probability he ever reaches breakeven, or that an attacker
ever catches up with the honest chain, as follows [8]:
p = probability an honest node finds the next block
q = probability the attacker finds the next block
qz = probability the attacker will ever catch up from z blocks
behind

Given our assumption that p > q, the probability drops
exponentially as the number of blocks the attacker has to
catch up with increases. With the odds against him, if he
doesn't make a lucky lunge forward early on, his chances
become vanishingly small as he falls further behind. We now
consider how long the recipient of a new transaction needs to
wait before being sufficiently certain the sender can't change
the transaction. We assume the sender is an attacker who

wants to make the recipient believe he paid him for a while,
then switch it to pay back to himself after some time has
passed. The receiver will be alerted when that happens, but
the sender hopes it will be too late. The receiver generates a
new key pair and gives the public key to the sender shortly
before signing. This prevents the sender from preparing a
chain of blocks ahead of time by working on it continuously
until he is lucky enough to get far enough ahead, then
executing the transaction at that moment. Once the
transaction is sent, the dishonest sender starts working in
secret on a parallel chain containing an alternate version of his
transaction. The recipient waits until the transaction has been
added to a block and z blocks have been linked after it. He
doesn't know the exact amount of progress the attacker has
made, but assuming the honest blocks took the average
expected time per block, the attacker's potential progress will
be a Poisson distribution with expected value:

To get the probability the attacker could still catch up now, we
multiply the Poisson density for each amount of progress he
could have made by the probability he could catch up from
that point:

Rearranging to avoid summing the infinite tail of the
distribution…

Converting to C code…
#include <math.h>
double AttackerSuccessProbability(double q, int
z)
{
 double p = 1.0 - q;
 double lambda = z * (q / p);
 double sum = 1.0;
 int i, k;
 for (k = 0; k <= z; k++)
 {
 double poisson = exp(-lambda);
 for (i = 1; i <= k; i++)
 poisson *= lambda / i;
 sum -= poisson * (1 - pow(q / p, z - k));
 }
 return sum;
}

Running some results, we can see the probability drop off
exponentially with z.
q=0.1 z=0 P=1.0000000 z=1 P=0.2045873 z=2
P=0.0509779 z=3 P=0.0131722 z=4 P=0.0034552 z=5
P=0.0009137 z=6 P=0.0002428 z=7 P=0.0000647 z=8
P=0.0000173 z=9 P=0.0000046 z=10 P=0.0000012
q=0.3 z=0 P=1.0000000 z=5 P=0.1773523 z=10
P=0.0416605 z=15 P=0.0101008 z=20 P=0.0024804
z=25 P=0.0006132 z=30 P=0.0001522 z=35
P=0.0000379 z=40 P=0.0000095 z=45 P=0.0000024
z=50 P=0.0000006

Solving for P less than 0.1%…
P < 0.001 q=0.10 z=5 q=0.15 z=8 q=0.20 z=11
q=0.25 z=15 q=0.30 z=24 q=0.35 z=41 q=0.40 z=89
q=0.45 z=340

12. Conclusion
We have proposed a system for electronic transactions
without relying on trust. We started with the usual framework
of coins made from digital signatures, which provides strong
control of ownership, but is incomplete without a way to
prevent double-spending. To solve this, we proposed a peer-
to-peer network using proof-of-work to record a public history
of transactions that quickly becomes computationally
impractical for an attacker to change if honest nodes control a
majority of CPU power. The network is robust in its
unstructured simplicity. Nodes work all at once with little
coordination. They do not need to be identified, since
messages are not routed to any particular place and only need
to be delivered on a best effort basis. Nodes can leave and
rejoin the network at will, accepting the proof-of-work chain as
proof of what happened while they were gone. They vote with
their CPU power, expressing their acceptance of valid blocks
by working on extending them and rejecting invalid blocks by
refusing to work on them. Any needed rules and incentives
can be enforced with this consensus mechanism.

13. References
[1] W. Dai, "b-money," http://www.weidai.com/bmoney.txt,
1998.
[2] H. Massias, X.S. Avila, and J.-J. Quisquater, "Design of a
secure timestamping service with minimal trust requirements,"
In 20th Symposium on Information Theory in the Benelux, May
1999.
[3] S. Haber, W.S. Stornetta, "How to time-stamp a digital
document," In Journal of Cryptology, vol 3, no 2, pages 99-
111, 1991.
[4] D. Bayer, S. Haber, W.S. Stornetta, "Improving the
efficiency and reliability of digital time-stamping," In
Sequences II: Methods in Communication, Security and
Computer Science, pages 329-334, 1993.
[5] S. Haber, W.S. Stornetta, "Secure names for bit-strings," In
Proceedings of the 4th ACM Conference on Computer and
Communications Security, pages 28-35, April 1997.
[6] A. Back, "Hashcash - a denial of service counter-measure,"
http://www.hashcash.org/papers/hashcash.pdf, 2002.
[7] R.C. Merkle, "Protocols for public key cryptosystems," In
Proc. 1980 Symposium on Security and Privacy, IEEE
Computer Society, pages 122-133, April 1980.
[8] W. Feller, "An introduction to probability theory and its
applications," 1957.

Design and published by satoshiwallpaper.com Satoshi Nakamoto - satoshin@gmx.com - www.bitcoin.org

